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Abstract

Natural convection in the melt phase of the Czochralski crystal growth system is unavoidable due to the gravitational ®eld. Both horizontal and

vertical temperature gradients in¯uence the stability of the melt convection. For a tall crucible, a boundary layer type of convection is dominant,

while Rayleigh±Benard-type convection occurs for a shallow crucible. A low Reynolds number �±" model was employed, but found to be

inadequate for prediction and a more sophisticated model is required. # 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The Czochralski method is widely used to produce single

crystal rods with a large diameter that is preferred for the

manufacture of electronic and optical devices. Since the

crystal rods are formed by solidi®cation of the melt, con-

vection has signi®cant effects on their quality. It is known

that ¯uctuations of the ¯ow and temperature in the melt

cause inhomogeneous distribution of dopants and/or crystal

structure, which is generally referred as `striation.'

Fluctuations of temperature in the melt have been con-

®rmed by experiments and direct observations. Iliev et al. [1]

measured the temperature ¯uctuations of the melt with

thermocouples, while Edwell et al. [2] measured oscillations

in temperature by using optical ®bers. Munakata and Tana-

sawa [3] and Ozoe et al. [4] reported oscillatory character-

istics of the melt in a Czochralski con®guration system

similar to that considered herein, while Kakimoto et al.

[5] directly measured particle paths in the Si melt with a

sophisticated X-ray topography technique. The current sta-

tus of the research on ¯ow instability in the melt has been

reviewed by Muller [6] and by Ristorcelli and Lumley [7].

However, the prediction and control of such instability are

still under investigation.

Instability is one of the active branch in the ®eld of ¯uid

mechanics. The study of instability of Benard convection

[8,9] has been mostly limited to simple geometries.

Recently, with the development of computer technology

and numerical methods of simulation it has become possible

to explore the unstable structure of the ¯ow by solving non-

linear transient momentum and energy equations, including

the Hoph point [10].

The present paper considers the in¯uence on the Czo-

chralski system of many parameters such as the Reynolds

numbers for rotation of the crystal and crucible, the Pandtl

number of the melt, the Grashof number, the aspect ratio of

the crucible, the ratio of the crucible to the radius of the

crystal, the Marangoni number, etc. Due to the vertical and

horizontal temperature gradients in the melt under the

gravitational ®eld, natural convection is unavoidable in a

practical system for crystal growth. The purpose of this

paper is to study the instability induced by natural convec-

tion in the Czochralski con®guration. As the melt level

changes while the crystal is pulled up from the melt, the

aspect ratio of the melt changes. The time-averaged value of

the convection predicted by low Reynolds �±" turbulent

model is presented here.

2. Mathematical model and numerical method

A Czochralski bulk-¯ow model [11] is adopted to exhibit

the physical mechanism of the present problem, while the

shape of the crystal/melt interface and free surface of the

melt are assumed to be a horizontal plane as shown in Fig. 1.

Buoyancy is the only driving force considered in the present

study.
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As the Rayleigh number increases, natural convection in

the melt successively experiences laminar, time-dependent

and even turbulent states. The Navier±Stokes equation and

energy equation may be used directly for the laminar and

time-dependent regimes. To bridge the laminar and turbu-

lent regimes, the low Reynolds number �±" model by

Launder and Sharma [12] was also adopted to predict the

Reynolds stress terms in the time-averaged equations of

momentum and energy.

These differential equations and boundary conditions are

written in dimensionless form with the following reference

quantities: Lr�Rc for length, Vr�(g�Rc�T)1/2 for velocity,

Kr�Vr
2 for turbulent kinetic energy, and "r��Kr/Rc

2 for

turbulent kinetic energy dissipation rate, �r�� for effective

viscosity, and ��(TÿTm)/(TWÿTm) for dimensionless

temperature. The derived dimensionless parameters repre-

senting geometrical effects, ¯uid properties and relative

magnitude of the driving force are:

Re � Gr1=2

Gr � g��TR3
c=�

2

Pr � �=�
Ar � H=Rc

�R � Rs=Rc

With the above assumptions and scaling, the generalized

equation governing the ¯ow and heat transfer of the melt for

both laminar and turbulent ¯ow is:
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Table 1 lists the diffusion coef®cient ÿ� and source term S�
for the generalized dependent variable �. For laminar ¯ow,
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Fig. 1. Schematic of the Czochralski system and the coordinates.

Table 1

The diffusion coefficient ÿ� and source term S� for variable �

� ÿ� S�

1 0 0

U
1� ��t

Re
ÿ @P

@R
� 1

R

@

@R

1� ��t
Re

R
@U

@R

� �
� @

@Y

1� ��t
Re

@V

@R

� �
ÿ 2��t

R2Re
U

V
1� ��t

Re
ÿ @P

@Y
� @

@Y

1� ��t
Re

@V

@Y

� �
� 1

R

@

@R

1� ��t
Re

R
@U

@Y

� �
ÿ Gr

Re2
�

�
1

Re

1

Pr
� �

�
t

��

� �
0

�* 1

Re
1� �

�
t

��

� �
P� � G� � Dÿ "�=Re

"* 1

Re
1� �

�
t

�"

� �
"�

��
C1"f1�P� � C3"G"� ÿ C2"f2

"�

Re

� �
� E

P� � ��t
Re

2
@U

@R

� �2

� @V

@Y

� �2

� U

R

� �2
" #

� @U

@Y
� @V

@R

� �2
( )

; D � ÿ 2

Re

@
�����
��
p

@R

� �2

� @
�����
��
p

@Y

� �2
" #

; G� � ÿ�
�
t

��

Gr

Re3

@�

@Y

E � 2��t
Re

@2U

@Y2

� �2

� @2V

@R2

� �2
" #

; ��t �
�t

�
� Re2C�f��

� �
�2

"�
; Ret � Re2��2="�

184 X. Wu et al. / Chemical Engineering Journal 71 (1998) 183±189



The governing equations and boundary conditions for the

¯ow and heat transfer were solved numerically by the

control-volume method. A staggered grid system was used

to calculate the velocity ®eld in the melt, and pressure and

velocity were linked by the SIMPLEC [13] algorithm. The

uniform grid 25�50 with a time step of 0.02 was employed

for the calculation of laminar ¯ow. For turbulent ¯ow, a non-

uniform grid 80�80 was used with a very dense mesh near

the wall to account for the dramatical change of variables

from the boundary to the core. The computation was

assumed to have converged when the residues of all vari-

ables were less than 10ÿ4.

3. Results and discussion

3.1. Laminar steady flow

When the Rayleigh number is less than some critical

value, the ¯ow is steady and laminar. Fig. 2 shows theFig. 2. Steady laminar natural convection for Ra�3�104.

Fig. 3. Transient change of temperature at (R�0.5, Y�1) for Ra�3�104 and Pr�0.015.

Fig. 4. Transient change of stream function at (R�0.5, Y�1) for Ra�4.5�104 and Pr�0.015.
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streamlines and isothermal pro®les at Ra�3�104 and

Pr�0.015. The melt is heated along the wall of the crucible

and cooled at the melt/crystal interface, which results in an

anticlockwise circulating buoyancy-driven ¯ow. For low

Reynolds numbers, the ¯ow is steady and as shown in

Fig. 3, any disturbance is damped. However, the Rayleigh

number for conventional Czochralski crystal growth is in the

range between 9�104ÿ1.35�106.

3.2. Time-dependent flow

When the Rayleigh number increases, the ¯ow ®rst

undergoes a bifurcation to an unsteady, periodic solution.

The ¯ow structure may become more complex with several

vortices in the melt. Fig. 4 shows the variation of the stream

function with time at the location R�0.5 and Y�1 for

Rayleigh number of 4.5�104 and a Prandtl number of

Fig. 5. Streamline perturbation over one period of the oscillation corresponding to the marked point in Fig. 4.
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0.015. The value of the stream function oscillates periodi-

cally without damping. Fig. 5 shows a series of instanta-

neous streamlines of the melt in one cycle of the oscillation.

The ¯ow pattern changes periodically, although it is quite

limited in its magnitude.

For natural convection in a Czochralski con®guration,

two types of instability may be noted. One is the boundary

layer-type of instability due to the horizontal temper-

ature gradient along the vertical wall of a crucible, and

the other is related to the Rayleigh±Benard-type instability

of the region heated from below, in this case, the bottom

of the crucible. These instabilities are dependent on the

aspect ratio of the melt. For a tall crucible (large aspect

ratio), which represents the initial stage of crystal growth,

the ¯ow is dominated by the boundary-layer-type, such as

those of Fig. 5. As the aspect ratio decreases, the ¯ow

structure becomes like that in Fig. 6. In Fig. 6(a), the ¯ow

is separated along the vertical wall of the crucible. Fig. 6(b)

shows the ¯ow pattern of the melt with an aspect ratio

0.5. However, with further decrease in the aspect ratio

of the melt as occurs in the tail-end stage, a Rayleigh±

Benard-type ¯ow is found, as shown in Fig. 6(c). These

characteristics are summarized in Fig. 7. The ordinate

is a critical Rayleigh number for the start of oscillatory

convection. The peak value is found at an aspect ratio of

0.5. Flow is dominated by the boundary-layer-type of

instability when the aspect ratio is greater than 0.5 and

by the Rayleigh±Benard-type instability when the aspect

ratio is less than that value.

3.3. Towards turbulent flow

In a large-scale Czochralski crystal growth system, the

non-dimensional parameters such as the Reynolds number,

the Grashof number, etc. become large, which implies that

the melt ¯ow may become turbulent. Several researchers

[14±16] have employed the turbulent model to solve the

¯ow structure of the melt in a Czochralski system. Here,

emphasis is put on the ¯ow behavior of natural convection

using a low Reynolds number �±" model.

Fig. 8 shows the dimensionless streamlines, isotherms

and turbulent viscosity at a Rayleigh number of Ra�2�108

and an aspect Ar�2. Compared with the laminar time-

dependent ¯ow of Fig. 5, no separation is found along

the vertical wall of the crucible, and one vortex is formed

in the melt, which is similar to the result of Kinney and

Brown [14] who implemented a hybrid �±" model. For a

shallow crucible, however, both � and " decreased to zero

Fig. 6. Variation of flow pattern with aspect ratio for Ra�2.25�105.

Fig. 7. Variation of critical Rayleigh number with aspect ratio.
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during the process of computation, resulting in a zero-

turbulent viscosity within the melt. A similar result is also

demonstrated by Hanjalic [17] for natural convection in a

horizontal enclosure heated from below.

This suggests that the low Reynolds number �±" model

yields only one-vortex structures that may overpredict

turbulent viscosity in some regions. For practical Czo-

chralski crystal growth, the melt ¯ow may be more com-

plicated due to other driving forces, and a more

sophisticated turbulent model may be required to produce

realistic results.

The numerical results, both laminar and turbulent, have

been known to depend on grid sizes. The present computa-

tions were carried out for laminar and/or turbulent ¯ows,

with uniform or non-uniform grids, respectively. Although

we did not carry out the detailed study on the effect of grid

sizes, substantively different results are not expected

according to our previous computational experiences on

this point.

4. Conclusion

Natural convection in a Czochralski con®guration was

analyzed numerically. Both laminar and low-Reynolds

number �±" models were employed.

1. When the Rayleigh number of the melt is less than

some critical value, the flow is steady.

2. The aspect ratio of the melt significantly influences

mode of flow of the melt convection. For a tall crucible,

convection is dominated by boundary layer-type of flow;

for a shallow layer, convection is dominated by

Rayleigh±Benard-type flow.

3. A low Reynolds number �±" turbulent model was

employed for natural convection. It predicted only one

vortex, which is the result of overprediction of turbulent

viscosity. For a shallow crucible, the value of turbulent

variables decreases to zero, resulting in laminar convec-

tion.

5. Nomenclature

Ar aspect ratio�H/Rc

g acceleration due to gravity (m sÿ2)

Gr Grashof number�g��T Rc
3/�2

H height of the melt (m)

P dimensionless pressure�p/�Vr
2

Pr Prandt1 number��/�
R dimensionless radial coordinate�r/Rc

Ra Rayleigh number Ra�Gr�Pr

Rc inner radius of the crucible (m)

Rs radius of the crystal (m)

Re equivalent Reynolds number� ������
Gr
p

S source term

t time (s)

tr referent time�Rc/Vr

T temperature (K)

U dimensionless radial velocity�u/Vr

V dimensionless axial velocity�v/Vr

Y dimensionless axial coordinate�y/Rc

Fig. 8. Turbulent natural convection computed by low Reynolds �±" model at Ra�2�108.
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5.1. Greek symbols

� thermal diffusivity (m2 sÿ1)

� turbulent kinetic energy (m2 sÿ2)

" turbulent energy dissipation (m2 sÿ3)

� general dependent variable

� volumetric coefficient of expansion with tempera-

ture (1/K)

� thermal conductivity (W mÿ1 Kÿ1)

� dynamic viscosity (kg mÿ1 sÿ1)

� kinetic viscosity��/� (m2 sÿ1)

� density (kg mÿ3)

�s ratio of the crystal radius to the crucible radius�Rs/

Rc

� dimensionless temperature (TÿTm)/(TWÿTm)

� dimensionless time�t/tr
ÿ diffusion coefficient

5.2. Subscript

c crucible

r reference

s crystal

t turbulent

5.3. Superscript

c critical

* dimensionless
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